If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=112
We move all terms to the left:
x^2+x-(112)=0
a = 1; b = 1; c = -112;
Δ = b2-4ac
Δ = 12-4·1·(-112)
Δ = 449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{449}}{2*1}=\frac{-1-\sqrt{449}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{449}}{2*1}=\frac{-1+\sqrt{449}}{2} $
| 15000+0.70x=x | | 7x²=84 | | 6x+34=2x-6 | | (3x+2)(2x+1)=(6x-4)(x-1) | | 8b-5=59 | | x.1,2+3,4=55555 | | 15x+40=8x–9 | | x4–20x2+64=0 | | x=7(x+3)/3x+5 | | 8x+1+x+8=90 | | 12/x=1/5 | | 9l=36 | | 4(w+5)=4w+20 | | 6v–4=–3v+5 | | 3p+8=-13 | | 79+x=3x+19 | | 5a-1,5=2a | | 2b+8–5b+3=-13+8b–5 | | x²+36=6 | | -2/3m=3/4 | | n²+3n-44=0 | | 6h+4=3h+5 | | -7(x-2)=3(x-3)-10x+23 | | 4x-4=6+6x | | 4x-x=-15 | | 5x+x²=4 | | x-4.5=x+7 | | 3(x-1)-2=22 | | b²-13b=-12 | | 4x+2+7x=123 | | x-2.5x=12 | | 2x+18=5x+315=3x |